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Abstract—Mean Opinion Score (MOS) prediction is the task
to automatically evaluate synthesized speech by a neural network
that emulates a human listening test. Traditional automatic MOS
prediction typically focused on mainstream languages, such as
English, due to large available data. However, for low-resource
languages, there is no large-scale MOS prediction data, that
hinders the study of those languages. In this paper, we propose
a novel Multi-Perspective Transfer Learning (MPTL) training
scheme with a new small-scale Mongolian MOS prediction
dataset MonMOS. MPTL includes Feature Transfer and Model
Transfer to transfer knowledge from the mainstream languages
to low-resource language from different perspectives. The experi-
mental results on the MonMOS show that the MPTL outperforms
the standard direct training scheme with classical architecture.
We will release the pre-trained models and MonMOS dataset at:
https://github.com/Ai-S2-Lab/MPTL-MOS .

Index Terms—MOS Prediction, Low-Resource Language,
Transfer Learning

I. INTRODUCTION

Mean Opinion Score (MOS) prediction [1] aims to assess
the overall quality of the speech generated from Text-to-
Speech (TTS) et al. with the help of neural networks [2],
[3]. Note that objective evaluations, such as Mel-cepstral
distance (MCD) [4], are not always correlated with human
perception [5], [6], while manual MOS evaluations are often
time-consuming and labor-intensive [1]. Therefore, automatic
MOS prediction becomes an appealing alternative to subjective
evaluation.

The neural network approach to automatic MOS prediction
has made much progress. One influential work is MOSNet
[1], which predicts MOS from spectrograms using a CNN
and BLSTM-related architecture. Furthermore, MBNet [3] and
LDNet [7] both explored explicitly learning the listener bias
in the MOS data. Furthermore, Shen et al. [8] incorporated the
Self-Supervised Learning (SSL) based representations [9] into
MOS prediction and achieved remarkable performance. De-
spite the progress, the above works just focus on mainstream
languages [10], [11] such as English, and their remarkable

Rui Liu is corresponding author. The research by Rui Liu was funded
by the Young Scientists Fund of the National Natural Science Foundation
of China (No. 62206136), Guangdong Provincial Key Laboratory of Human
Digital Twin (No. 2022B121201 0004), and the “Inner Mongolia Science
and Technology Achievement Transfer and Transformation Demonstration
Zone, University Collaborative Innovation Base, and University Entrepreneur-
ship Training Base” Construction Project (Supercomputing Power Project)
(No.21300-231510).

performance cannot be separated from the support of large-
scale data, such as VCC2016 [12], VCC2018 [13], BVCC
[2], BC2019 [14] and ASV2019 [15] et al. However, for low-
resource languages, there is no large-scale MOS prediction
data, and it is difficult to achieve encouraging results on small-
scale data, which limits the development of TTS for such
languages [11].

To address this issue, inspired by transfer learning [16],
we propose a Multi-Perspective Transfer Learning (MPTL)
training scheme for MOS prediction of low-resource language.
MPTL includes Feature Transfer and Model Transfer. Specif-
ically, 1) Feature Transfer aims to transfer knowledge from
the speech self-supervised model of mainstream languages
to low-resource language to learn robust acoustic feature
representations for low-resource language; 2) Model Transfer
seeks to transfer knowledge from the MOS prediction model
of mainstream language to low-resource language to learn
robust model starting points for low-resource language. Last
but not least, we propose a new MOS prediction dataset
MonMOS for the Mongolian language [17], a representative
of low-resource language. The experimental results on Mon-
MOS suggest that the proposed MPTL is able to efficiently
transfer knowledge from mainstream language to low-resource
language to achieve superior MOS prediction performance.
The main contributions of this work can be summarized as
follows:

• We propose a novel multi-perspective transfer learning
scheme for automatic MOS prediction of low-resource
language.To our knowledge, this is the first in-depth study
of the training strategy for automatic MOS assessment of
low-resource language;

• The MPTL consists of Feature Transfer and Model Trans-
fer to perform robust SSL feature learning and accurate
MOS prediction;

• The experimental results on MonMOS validated our
MPTL.

In the rest of this paper, we first introduce the methodology
of MPTL-MOS in Section II. Afterward, we present the
experimental setup in Section III, which includes the dataset,
the baseline, and the implementation details. We also show
all the experimental results and conduct in-depth analyses in
Section III. Finally, we conclude this paper and discuss future
work in Section IV.
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Fig. 1. The overall workflow of MPTL. Specifically, the backbone of MOS prediction network of low-resource language includes the Speech Self-Supervised
Learning Model and MOS Prediction Model. In face of small-scale speech and MOS datasets of low-resource language, the Feature Transfer aims to transfer
the knowledge from the speech SSL model of mainstream language, that pre-trained with a large-scale speech dataset, to that of low-resource language, while
the Model Transfer aims to transfer the knowledge from the MOS prediction model of mainstream language, that pre-trained with a large-scale MOS dataset,
to that of low-resource language.

II. MPTL: METHODOLOGY

We first describe the network backbone of our MPTL,
then explain the MPTL workflow. The first perspective is
Feature Transfer, that aims to transfer the knowledge from the
speech SSL model of mainstream language, that pre-trained
with a large-scale speech dataset, to that of low-resource
language, to allow for extracting the robust SSL acoustic
feature for low-resource language. The second perspective is
Model Transfer, which seeks to transfer the knowledge from
the MOS prediction model of mainstream language, that pre-
trained with a large-scale MOS dataset, to that of low-resource
language, thus building a robust mapping between the audio
features and the MOS score for low-resource language.

A. Network Backbone

As shown in Fig.1, our MPTL adopts the Speech SSL
Model and the MOS Prediction Model as the backbone. Note
that the Speech SSL Model generates the robust SSL feature
[18] by reading the input speech, while the MOS Prediction
Model takes both the SSL feature and traditional Mel-spectrum
feature to predict the MOS score.

For the Speech SSL Model, the key structure is a Masked
Acoustic Model (MAM) [19] that achieves unsupervised
speech representation learning. Given the masked frames, the
MAM learns to reconstruct and predict the original frames.
In this work, we select the Mockingjay model [20] to ex-
tract the SSL feature. Specifically, Mockingjay uses multi-
layer transformer encoders and multi-head self-attention [21]
to achieve bidirectional encoding, thus considering past and

future contexts at the same time. During training, randomly
select 15% of the input frames, and the Mockingjay model
predicts the selected frames based on its left and right context.
The L1 Loss is used to minimize the reconstruction error
between prediction and ground-truth frames on the selected
15%. More details are referred to [20]. In a nutshell, assume
the input speech is X , the Speech SSL Model reads X and
outputs the SSL feature H:

H = Θ̃SSL
ll (X) (1)

where Θ̃SSL
ll means the model parameters of the speech SSL

model.

For the MOS Prediction Model, we adopt the CNN, BiL-
STM, and their mixup as three comparative structures as
detailed in Section III, since these are the dominant structures
in the field of MOS prediction [1]. Following [1], we combine
the utterance-level Mean Square Error (MSE) [22] and frame-
level MSE as the final loss function. As mentioned before, the
mathematical expression for the MOS prediction is as follows:

Y = Θ̃MOS
ll (concat(H, f)) (2)

where Θ̃MOS
ll means the model parameters of the MOS pre-

diction model, f is the hand-crafted Mel-spectrum feature, Y
indicated the final MOS score of low-resource language. The
concat function seeks to concatenate two features by feature
dimension [8]. In run-time inference, the trained Speech SSL
Model and MOS Prediction Model are combined together to
predict the final MOS score for the input speech.
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B. MPTL Workflow
As shown in Fig. 1, the parameters of each module, that

are Θ̃SSL and Θ̃MOS , in the network backbone are obtained
by the proposed MPTL strategy separately. We first pre-train
each module based on large-scale speech and MOS datasets
in mainstream languages. After that, with the help of small-
scale speech and MOS datasets of low-resource languages,
we transfer the pre-trained knowledge to the corresponding
modules of low-resource languages respectively.

1) Pre-training: In the pre-training stage, we first train the
model parameters of Speech SSL Model and MOS Prediction
Model for mainstream languages to provide a stable initial
state for subsequent transfer learning. We denote the large-
scale speech and MOS datasets of mainstream language as
LSDml and LMDml respectively. To be consistent with the
low-resource language, the Speech SSL Model and MOS Pre-
diction Model share the same structure with the corresponding
modules of low-resource language in Section II-A. In this
way, we obtain the model parameters of Speech SSL Model
and MOS Prediction Model, that are Θ̂SSL

ml and Θ̂MOS
ml , for

mainstream languages.
2) Feature Transfer: Feature transfer aims to transfer the

knowledge from the speech SSL model of mainstream lan-
guage, that pre-trained with a large-scale speech dataset, to that
of low-resource language. Specifically, we denote the small-
scale speech dataset of low-resource language as SSDll. Note
that we use the trained Θ̂SSL

ml to initialize the ΘSSL
ll , then fine-

tune the ΘSSL
ll with SSDll to conduct feature transfer. In this

way, we obtain the trained Θ̃SSL
ll for low-resource language,

which allows extracting the robust SSL acoustic feature H for
the low-resource language.

3) Model Transfer: Model transfer seeks to transfer the
knowledge from the MOS prediction model of mainstream
language, that pre-trained with a large-scale MOS dataset,
to that of low-resource language. Specifically, we denote
the large-scale MOS dataset of low-resource language as
SMDll = {Xll, Yll}, Xll and Yll mean the audio files and
their MOS score respectively. Note that we use the trained
Θ̂MOS

ml to initialize the ΘMOS
ll , then fine-tune the ΘMOS

ll with
SMDll to conduct feature transfer. In this way, we obtain
the trained Θ̃MOS

ll for low-resource language, which allows
learning the mapping between the audio features and the MOS
score.

With the help of MPTL, our MOS prediction network allows
for making good use of the knowledge of large-scale data in
mainstream language to achieve satisfactory performance for
the task of MOS prediction in low-resource languages.

III. EXPERIMENTS AND RESULTS

A. Datasets
To conduct pre-training and transfer learning in our ap-

proach, we incorporate various datasets. Specifically, we use
English and Mongolian datasets to represent mainstream and
low-resource languages, respectively. This helps us gain in-
sights into effective transfer learning strategies for similar low-
resource languages.

• LSDml: LibriSpeech [23] is treated as the large-scale
speech dataset of mainstream language. we just use
the train-clean-360 subset to conduct the SSL model
pertaining.

• LMDml: VCC2018 [13] is treated as the large-scale
MOS dataset of mainstream language that contains 20580
audios submitted by 38 different systems. A total of 267
expert judges are involved in VCC2018 and each audio
is scored by 4 judges. We randomly split the dataset into
training, validation and test sets with a size of 13580,
3000 and 4000.

• SSDll and SMDll: To facilitate MPTL, we present
the MonMOS dataset 1 as a small-scale collection of
speech and MOS datasets. Specifically, MonMOS is
derived from the final submission results of the Low-
Resource Mongolian Text-to-Speech Synthesis Challenge
2022 (NCMMSC2022-MTTSC) 2, comprising 2800 au-
dio samples, about 4.04 hours, submitted by 13 teams.
The evaluation process involved 20 expert judges who
participated in the MOS listening test, with each audio
sample being scored by 4 judges. To ensure a robust
evaluation, we partitioned the dataset randomly into train-
ing, validation, and test sets, with proportions of 65%,
15%, and 20% respectively. By introducing the MonMOS
dataset, we aim to facilitate research and advancements
in MOS prediction of low-resource language.

B. Comparative Study

1) Various Training Schemes: To validate the proposed
MPTL, We develop four training methods for a comparative
study.

• 1) Directly Training (DT): We follow MOSNet [1]
and directly train the MOS prediction network with the
MonMOS dataset without any pre-training and transfer
learning;

• 2) DT + Model Transfer: We just conduct Model
Transfer on the basis of DT, that means the Θ̃MOS

ll is
transferred by the Θ̂MOS

ml ;
• 3) DT + Feature Transfer: We just conduct Feature

Transfer on the basis of DT, that means the Θ̃SSL
ll is

transferred by the Θ̂SSL
ml and the Θ̃MOS

ll is trained from
scratch. The input feature of MOS prediction model
includes SSL feature and the Mel-spectrum feature;

• 4) w/o concat is an ablation study for feature concatena-
tion in which we just use the SSL feature. Note that the
first three baselines are treated as the ablation study for
the Feature Transfer and Model Transfer.

2) Various Architecture: Following MOSNet [1] 3, we
adopt various architectures, including CNN, BLSTM, and
CNN+BLSTM as the main component of MOS prediction

1Dataset link: https://github.com/Ai-S2-Lab/MPTL-MOS
2http://mglip.com/challenge/NCMMSC2022-MTTSC/index.html
3Although this model was originally proposed in the field of voice conver-

sion, it has also played a wide role in the field of TTS, and it is also suitable
as the backbone.
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Fig. 2. Loss visualization of various models.

model. At last, we use two FC layers and a global averaging
operation to obtain the utterance-level MOS score.

C. Experimental Setup

We extract 80-channel mel-spectrum features with a frame
size of 50 ms and 12.5 ms frame shift. All speech samples
are resampled to 16 kHz. For the speech SSL model, we just
follow the configuration of Mockingjay [20]. For the MOS
prediction model, the CNN module consists of 4 Conv2D
blocks with filter size [16, 32, 64, 128], respectively. Each
block includes 3 Conv2D layers with strides shape {[1,1],
[1,1], [1,3]}, respectively. Each direction of BiLSTM contains
128 cells. The pre-training steps of the speech SSL model
and MOS prediction model are 200000 and 100 epochs. We
conduct feature transfer and model transfer with 100000 and
100 epochs respectively. All systems are trained by the Adam
[24] optimizer with a learning rate of 0.0001. The dropout rate
is set to 0.3. We set the batch size to 64. All DT systems are
trained with 100 epochs. The MSE [22] value is treated as the
objective metric.

D. Experimental Results

We report the MSE results of the comparative study as Table
I. It has negatively oriented scores and lower values are better.
We conducted a comprehensive analysis of the results in the
following three areas.

1) Comparison of training scheme: As shown in the fifth
row of Table I, the MPTL achieves the best performance over
all baselines, no matter what architecture. For example, for
CNN, the MSE of MPTL method is 0.09, while the other
baselines achieve 0.17, 0.11, 0.13, and 0.31 respectively. In
addition, MPTL gains the best MSE with 0.07 for BiLSTM
and 0.09 for BiLSTM. Comparing MPTL and DT, the gap of
0.08 demonstrates the effectiveness of our proposed MPTL,
which can achieve remarkable MOS prediction performance
with small-scale dataset for low-resource language. Comparing
MPTL with DT + Model Transfer and DT + Feature Transfer
can be viewed as an ablation experiment for Model Transfer
and Feature Transfer, we can clearly observe that both transfer

Fig. 3. MSE results of different data sizes of MonMOS.

learning skills result in performance improvements. The MSE
value of the last row suggests that concatenating the SSL and
Mel-spectrum features allows for robust acoustic representa-
tion by leveraging their complementary nature. We note that
the last ablation baseline just uses SSL feature and performs
the lowest MSE. Although similar phenomena have appeared
in other work [25], we thought it might be useful to try some
other SSL representations, such as HuBERT, etc., to explore
this issue in the future.

2) Comparison of architecture: For architecture compari-
son, we find inconsistent findings with MOSNet [1]. The re-
sults in Table I show that BiLSTM, instead of CNN+BiLSTM,
performs the best performance. This reason may be due to the
fact that the data scale of MonMOS is so small that it does
not match the relatively complex structure. BiLSTM has the
ability to integrate long-term time dependencies and sequential
characteristics into representative features, thus outperforming
CNN.

3) Loss Visualization: We visualize the loss function of
different models, as shown in Fig. 2. It can be observed that
our method converges quickly and achieves lower loss values.
The curve of loss variation indicates that our method improves
the performance of MOS prediction, resulting in more accurate
MOS prediction results. Therefore, our method is considered
feasible for MOS prediction tasks in low-resource languages.

E. Discussion of Data Requirement

To further explore the relationship between our MPTL and
data requirements, we aliquoted the MonMOS data into 5
parts (each part includes a duration of about 48 minutes) to
compare the effect of MPTL at different data sizes. [1/5, 2/5,
3/5, 4/5, 1] represent data sizes of 560, 1020, 1920, 2240, and
2800 samples respectively. The durations for each data size are
about 48, 96, 144, 192, and 240 minutes. We report the results
in Fig. 3. We can observe that the MSE gradually decreases as
the data size increases. We venture to guess that the model will
keep getting better if the data size keeps increasing. However,
increasing data size is not a smart way for us to solve the low-
resource problem, In the future, we will continue to investigate
how to achieve more efficient transfer learning methods with
fewer data.

IV. CONCLUSION

This paper presents a novel Multi-Perspective Transfer
Learning (MPTL) training scheme for automatic MOS predic-
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TABLE I
MSE RESULTS OF THE COMPARATIVE STUDY. (·) INDICATES THE INPUT AUDIO FEATURE OF THE MOS PREDICTION MODEL IN THAT METHOD.

Method CNN BiLTSM CNN+BiLSTM
DT (Mel) [1] 0.17 0.13 0.15
DT+Model Transfer (Mel) 0.11 0.10 0.11
DT+Feature Transfer (Mel+SSL) 0.13 0.09 0.12
MPTL (Mel+SSL) 0.09 0.07 0.09

w/o concat (SSL) 0.31 0.19 0.22

tion of low-resource language. MPTL successfully transfers
acoustic knowledge learned from a large-scale dataset of
mainstream language to the model of low-resource language
by means of feature transfer and model transfer, achieving
impressive performance. To contribute to the development
of the field, we choose Mongolian, a representative of low-
resource language, as the research object and release a small-
scale Mongolian MOS prediction dataset, called MonMOS.
Comprehensive experimental comparisons and analyses vali-
dated the effectiveness of our method. As per our knowledge,
the proposed MPTL is the first study of MOS prediction
training method for low-resource language. In future work,
we intend to explore more SSL models for feature transfer and
more network structures for model transfer, and further extend
more languages to validate the effectiveness of the method.
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